
ARTICLE IN PRESS
0889-9746/$ - se

doi:10.1016/j.jfl

�Correspond
E-mail addr
Journal of Fluids and Structures 19 (2004) 1141–1153

www.elsevier.nl/locate/jnlabr/yjfls
A numerical modelling of stator–rotor interaction in a turbine
stage with oscillating blades

V.I. Gnesina,�, L.V. Kolodyazhnayaa, R. Rzadkowskib

aDepartment of Aerohydromechanics, Institute of Mechanical Engineering Problems, National Academy of Sciences of Ukraine,

2/10 Pozharsky St., Kharkov 61046, Ukraine
bDepartment of Dynamics of Machines, Institute of Fluid Flow Machinery, Polish Academy of Sciences, J. Fiszera St.,14,

Gdansk 80 952, Poland

Received 18 October 2002; accepted 21 July 2004
Abstract

In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those

caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction

between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall

efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D

unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic

forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution

of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from

one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor

blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation

equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan.

The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is

assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal

coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-

design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared

with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-

uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade

oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and

low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row;

moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of unsteady flows in aerodynamic cascades arouses considerable interest mainly because of the effect of

non-stationarity on the optimal designs, efficiency and reliability of turbomachine operation. The energy transfer in a
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turbine stage is accompanied by interaction of aerodynamic, inertial and elastic forces acting on the blades, which can

cause excessive blade vibration, leading to structural fatigue failures. The mutual interaction of these forces while taking

into account the structural and mechanical damping determines the aeroelastic behaviour of the blades and represents

an important problem of reliability and safety.

Because of the extreme complexity of the full problem, formerly the hypothesis was accepted that blade vibrations

cause unsteady effects, which are significantly smaller than unsteady effects due to flow non-uniformity upstream and

downstream of the blade row. In other words, it was assumed that there is no feedback of blade motion on the flow.

This incorrect, in most cases, assumption turned out to be a very fruitful one, as it allowed to uncouple the two physical

domains and to achieve great advances in each of them (namely in the unsteady aerodynamics and forced response

aspects). Since the beginning of the 1980s there has been a great deal of work on numerical methods for the calculation

non-linear unsteady flows by time-marching methods. These procedures have been carried out in particular in

connection with flows through aerodynamically coupled blade rows. Some assume inviscid flow and use the Euler

equations (Gnesin, 1982; Koya and Kotake, 1985; Rao and Delancy, 1990), while others adopt the Navier–Stokes

equations with turbulence modelling, such as Yershov et al. (2001). It is clear that in spite of a number of limitations in

the non-linear time-marching methods, particularly for 3-D viscous calculations, these have given us very useful

tools to investigate a whole variety of different kinds of unsteady flows, including stator/rotor interaction, rotating

stall, etc.

The incorrectness of the hypothesis concerning the insignificant influence of oscillating blades on the flow is proved

by the fact that uncoupling of the two domains results in the exclusion from consideration of a particularly difficult

problem in turbomachinery aeroelastic phenomena, namely that of self-excited oscillations (flutter) or auto-oscillations.

These phenomena are characterized by instability, continuous interaction and energy exchange between the fluid and

the structure; so, they cannot be studied properly in the frame of each of uncoupled domains separately (aerodynamics

or structural dynamics).

The traditional approach in flutter calculations of bladed disks is based on frequency domain analysis (Bakhle

et al., 1992; Bolcs and Fransson, 1986), in which the blade motion is assumed to be a harmonic function of time

with a constant phase lag between adjacent blades, and the natural mode shapes and frequencies are obtained

by in-vacuum structural computations. This approach ignores the feedback effect of the fluid on structural

vibration.

At present the existing approaches in flutter calculations of 3-D blade rows use the simultaneous integration in time

of the equations of motion for the structure and the fluid (Chew et al., 1998; Gnesin and Kolodyazhnaya, 1999; Gnesin

et al., 2000). However, in these works it is supposed that perturbations in the flow are due to blade motion, and the flow

far upstream and downstream from the blade row contains small fluctuations of the uniform free-stream.

The aim of the present work is to present the mathematical model and the numerical analysis of the

coupled fluid–structure solution for 3-D flow through the turbine stage while taking into account the blade

oscillations, but without separating the outer excitation and unsteady effects due to blade motion. This paper includes

the numerical results for aeroelastic behaviour of a steam turbine last stage with rotor blades of 760mm. The

mutual influence of both outer flow non-uniformity (upstream and downstream from the blade row) and blade

oscillation is investigated.
2. Coupled fluid–structure problem

Aeroelasticity is a multidisciplinary subject combining unsteady aerodynamics and structural dynamics. The

simultaneous integration in time of the equations of motion for the fluid and structure in a turbine stage allows the

correct assessment of the energy exchange which can occur with the transfer of energy from the mean flow to the

moving blade (self-excited oscillations, or flutter), with dissipation of the vibrating blade energy in the flow field

(aerodamping) or with a balance between input energy and dissipation (auto-oscillatons or limit-cycle oscillations).

In this study, the partially integrated method is used to solve a coupled aeroelasticity problem for a turbine stage. It

involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so

that the solution from one domain is used as a boundary condition for the other domain. In other words, a new rotor

blade position is calculated at each time step using the aerodynamic forces at the previous time step, and this new

position is used as the new fluid–structure boundary for the next time step when the aerodynamic forces are computed.

The simultaneous-sequential integration in time of the equations of motion for the structure and the fluid allows the

correct assessment of energy transfer in the turbine stage and blade motion by the action of aerodynamic forces, while

taking into account the mechanical and aerodamping.

The aerodynamic and structural models are described in what follows.



ARTICLE IN PRESS
V.I. Gnesin et al. / Journal of Fluids and Structures 19 (2004) 1141–1153 1143
2.1. Aerodynamic model

Three-dimensional (3-D) transonic flow of inviscid non-heat-conductive gas through an axial turbine stage is considered in

the physical domain, including the nozzle cascade (NC) and the rotor wheel (RW), rotating with constant angular velocity.

Taking into account the flow non-periodicity from blade to blade (in the pitchwise direction), it is convenient to choose the

calculated domain including all blades of the NC and RW assembly, entry region, axial clearance and exit region (Fig. 1).

Let the stator and the rotor involve zs and zr blades, respectively. It is obvious that at each time moment the flow structure in

the stage has spatial periodicity with minimal angular stage pitch Tmin (in radians), which is defined as Tmin ¼ ½2p=ðzs �

zrÞ�ðk12k2Þ; where k1 and k2 are mutually simple natural numbers, proportional to zs and zr, respectively (zs:zr=k1:k2).

Hence, the calculated domain has expansion Tmin in the pitchwise direction and involves k1 interblade channels of the

stator cascade and k2 interblade channels of the rotor wheel. The difference grid is divided into (k1+k2) difference

segments; each of them includes a blade and has an expansion in the circumferential direction, which is equal to the

pitch of stator or rotor blades, respectively (Fig. 1).

In turn, each of the passages is discretized using a hybrid H–H-grid. The external H-grid remains immobile during the

calculation, while the H-internal grid is rebuilt in each iteration by a given algorithm. Therefore, the external points

remain fixed, but internal points (points on the blade surface) move according to the blade motion. A fragment of the

deforming grid at the middle section of the rotor interblade passage is shown in Fig. 2.

The equations for the spatial transonic flow, including in the general case strong discontinuities in the form of shock

waves and wakes behind the exit edges of blades, are written in the relative Cartesian coordinate system rotating with

constant angular velocity ō; according to the full non-stationary Euler equations, presented in the form of integral

conservation laws of mass, impulse and energy (Gnesin and Kolodyazhnaya, 1999):
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Fig. 1. The tangential root plane of the turbine stage.

Fig. 2. Fragment of the moving grid for the rotor blade passage.
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Here subscripts and superscripts correspond to ‘‘old’’ and ‘‘new’’ cells, f are ‘‘small’’ values in cell centres, F1, F2, F3

are ‘‘big’’ values on the ‘‘middle’’ cell interface, s and wn are the area and normal velocity of the ‘‘middle’’ cell interface,

respectively. The gasdynamic parameters on the lateral sides (expressions in square brackets with integer indices) are

defined from the solution of the problem about the break-down (Riemann problem) of an arbitrary discontinuity on the

moving interfaces between two adjacent cells and by using the iteration process.

The difference scheme proposed supposes a piecewise linear distribution of parameters in grid cells. The derivatives

for linear extrapolation of gasdynamic parameters inside of cell are calculated with the use of the minimal value of the

derivative principle (Gnesin, 1999). Such a way of choosing the derivatives provides a small ‘‘spreading’’ of parameter

break-down and eliminates the possibility of appearance of negative values of pressure in the linear approximation. The

values obtained for the derivatives are applied to calculate the parameters at the side centers, which in turn are used to

calculate the problem about the break-down of discontinuity.

Constructed in this way, the difference scheme is a monotonic scheme, and it has second-order accuracy on the

smooth solutions with respect to spatial coordinates and is a first-order approximation with respect to the time

coordinate. To increase the approximation order with respect to the time coordinate, it is necessary that the linear

approximation of parameters by spatial coordinates should be completed with a linear approximation in time from cell

centre to side centre.

It is assumed that the unsteady flow fluctuations are due to both rotor-wheel rotation and to prescribed blade

motions, and the flows far upstream and far downstream from the blade row contain at most small perturbations of a

uniform free-streams. So, the boundary conditions formulation is based on one-dimensional theory of characteristics.

In the general case, when the axial velocity is subsonic, at the inlet boundary, initial values for total pressure, total

temperature and flow angles are given, while at the outlet boundary only the static pressure has to be imposed.

The total system of boundary conditions can be represented in the following form.

Before stator:
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where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðp=rÞ

p
is the sound velocity, T0 and P0 are the total temperature and the total pressure, a and g are the flow

angles in the circumferential and meridional directions, respectively.

On the blade surface, because the grid moves with the blade, the normal relative velocity is set to zero:

ðt � wÞ � n ¼ 0:

The calculation of difference Eq. (2) is reduced to the definition in explicit form of the gasdynamic parameters f nþ1 at

the time t ¼ tn þ Dt; for gasdynamic parameters at the moment tn , and values of ðF̄1; F̄2; F̄3Þ calculated with the use of

the above formulas.

The time step Dt is constant for all the calculated domain and is defined from the stability condition of the difference

scheme for linearized equations system (Chew et al., 1998):
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i ¼ x; y; z;

where a is the sound velocity.
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2.2. Structural model

The dynamical model of the oscillating blade in linearized formulation is governed by the matrix equation

½M�f €uðx; tÞg þ ½C�f _uðx; tÞg þ ½K �fuðx; tÞg ¼ fFg; (5)

where [M], [C], [K] are the mass, mechanical damping and stiffness matrices of the blade, respectively; u(x,t) is the blade

displacement, F is the unsteady aerodynamic force vector, which is a function of blade displacement.

The first step in the modal approach consists of solving the problem of the natural mode shapes and eigenvalues

without damping and in vacuum. Then, the displacement of each blade can be written as a linear combination of the

first N mode shapes with the modal coefficients depending on time:

fuðx; tÞg ¼ ½UðxÞ�fqðtÞg ¼
XN

i¼1

fUiðxÞgqiðtÞ: (6)

Here UiðxÞ is the displacement vector corresponding to i th mode shape, and qiðtÞ is the modal coefficient of ith mode.

Substituting (6) into (5) and taking into account the orthogonality property of the mode shapes, Eq. (5) can be written

in the form

½I �f €qðtÞg þ ½H�f _qðtÞg þ ½O�fqðtÞg ¼ flðtÞg: (7)

Here [I]=diag (1,1,y1), [H]=diag (2h1,2h2,y2hn) ; ½O� ¼ diagðo2
1;o

2
2; . . .o

2
i Þ are reduced diagonal matrices, oi is the

i th natural blade frequency, flðtÞg is the modal force vector corresponding to the mode shapes, hi ¼ 2oixi; where xi is

the ith modal damping coefficient. Thus, the dynamical problem (5) reduces to a set of decoupled differential equations,

relatively to modal coefficients of natural modes:

€qiðtÞ þ 2hi _qiðtÞ þ o2
i qiðtÞ ¼ liðtÞ; (8)

the dimensionality of which is lower by a few orders than problem (5). The equations of motion (8) can be solved using

any standard integration method.

The modal forces li are calculated at each iteration with the use of the instantaneous pressure field in the following

way:

li ¼

R R
spŪi � n̄� dsR R R

nrŪ
2
i dv

; (9)

where p is the pressure along the blade surface, r is the density.
3. Numerical results

The numerical calculations have been carried out for a compressor cascade (the First Standard Configuration) and

for a turbine cascade (the Fourth Standard Configuration), to compare with experiments presented by Bolcs and

Fransson (1986). The comparison has showed a good agreement between predicted and measured values (Gnesin et al.,

2000; Gnesin, 1999).

Below is presented the numerical aeroelasticity analysis for the last stage of a steam turbine with a rotor blade length

of 765mm and with stator-to-rotor blades number ratio of 56:96 (7:12). The calculation was performed for a nominal

regime under the gasdynamic parameters.

At turbine stage inlet:

P0 ¼ 12600Pa; T0 ¼ 323�K:

At turbine stage outlet:

P2 ¼ 2300Pa:

The blade oscillations were computed taking into account the first ten natural modes of oscillations and mechanical

damping. The values of the natural frequencies and mechanical damping coefficients are given in Table 1.

The numerical calculations have been made using a computational H-grid with density of 10
 24
 58 points per

each stator passage and 10
 14
 58 grid points for each rotor passage.

The instantaneous distribution of gasdynamic parameters in the axial gap is presented in Fig. 3. The variation of the

non-dimensional static pressure (p̄ ¼ p=q�a2�; q� and a� are the critical density and velocity) is shown in Fig. 3(a), the
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relative velocity ðū ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22 þ u23

q
=a�Þ in front of rotor blades in Fig. 3(b), and the angle of the rotor blade entrance

velocity in Fig. 3(c). The subscripts 100, 200, 300 correspond to root, middle and peripheral sections, respectively. From this

figure we can see that non-uniformity of gas flow displays maximal values in the root section and it decreases in the

direction of the peripheral section. The maximal nonuniformity in the static pressure and velocity are about 25%

relative to the mean gas flow, and non-uniformity in the flow angle of attack is �101–+101.

One of the important aspects of stator–rotor interaction is the effect of blade response while taking into account the

excitation caused by both the outer flow non-uniformity (the potential non-uniformity and the vorticity wakes behind

the stator blade edges which are due to the flow circulation changing in time ) and excitation due to blade oscillations.
Table 1

The values of the natural frequencies and mechanical damping coefficients

Mode no. 1 2 3 4 5 6 7 8 9 10

ni (Hz) 99 160 268 297 398 598 680 862 1040 1124

hi (Hz) 0.149 0.304 0.62 0.8 1.23 2.1 2.65 3.7 4.89 5.73

Fig. 3. Gasdynamic parameters distribution in axial gap of the turbine stage without blades oscillations.
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In Fig. 4 are shown the graphs of unsteady modal forces corresponding to the firs and second modes of oscillation for

the first and fifth blades. The calculation includes two regimes. The first regime (t=0–0.0075 s) involves the calculation

of unsteady flow through the turbine stage, while taking into account the rotor-wheel rotation, but without blade

oscillations. As the angular rotor velocity n is 50Hz, the time period corresponding to rotor moving past the zone

periodicity (seven stator blade passages, see Fig. 1) is equal to Ts ¼
1
8
ð1=nÞ ¼ 0:0025 s: As we can see in Fig. 4, it took a

time of 0.0075 s (three multiples of Ts) to reach the unsteady periodic solution.

At some point in time, called ‘start regime’ (for our calculation it corresponds to time instant of 0.0075 s), all blades

start to vibrate by the action of the instantaneous forces acting on the blades. Beginning from the start regime, the

unsteady phenomena in the turbine stage are the result of continuous force interaction between the gas flow, rotating

rotor wheel and oscillating blades. So, it is impossible to separate the unsteady effects caused by external excitation and

the unsteady effects due to blade oscillations.

In Fig. 5 are presented in enlarged scale the graphs of the modal forces corresponding to the first mode for the first

and fifth rotor blades at the beginning of transient (t=0.005–0.0125 s) and at the end of the seventh full rotor revolution

(t=0.141–0.149 s). In accordance with stator-to-rotor blades ratio zs : zr ¼ 7 : 12; the load phase lag for ith blade

compared to the first one is 2pði � 1Þzs=zr or 7pði � 1Þ=6: As we can observe from the graphs, the load phase shift does

not depend on the blade oscillation, it is defined only with stator-to-rotor blades ratio and it is equal to 2p=3 for the fifth
blade.

It is interesting to note the following:
(i)
 the unsteady force variation includes a high-frequency harmonic ðv ¼ 2800HzÞ corresponding to the rotor moving

past one stator-blade pitch and a spectrum of low frequencies (see Fig. 4);
(ii)
 the force variation is an aperiodic function of time, or so-called ‘‘almost periodic function’’ with period

approaching to infinity;
(iii)
 the forces acting on the different blades differ from one another.
The amplitude-frequency characteristics for the unsteady forces corresponding to the first, second, third and eighth

natural modes are shown in Fig. 6.

As seen from the graphs, the spectra of all modes include high-frequency harmonics (2800, 5600Hz) corresponding to

the pitch non-uniformity, and low-frequency harmonics due to the non-uniformity along a full circle caused by blade

oscillations.

The blade moving is presented in Figs. 7 and 8 in the form of modal coefficient dependence in time. Fig. 7

demonstrates the modal coefficients, corresponding to the first (Fig. 7(a)) and second (Fig. 7(b)) modes for the first and

fifth blades versus time.

In Fig. 8 shows the blade motion in the eighth mode. From these figures the following should be noted:
(i)
 the blade oscillations in the first mode pass to an auto-oscillation regime with a frequency which is smaller than the

natural one (see dotted line in Fig. (7a));
(ii)
 the logarithmic decrement of oscillations increases with the mode number;
(iii)
 the blade oscillations in low modes do not contain high frequencies, while the oscillations in the eighth mode

include both low and high frequencies (Fig. 8);
(iv)
 the blade oscillations phase shift depends not only on the stator-to-rotor blades ratio but also on the natural

oscillations frequency.
The amplitude-frequency characteristics of blade oscillations for the first, second, third and eighth modes are

presented in Fig. 9. As we can see, the blade oscillations in the ith mode are at a frequency, which is less than the natural

frequency of oscillations. The difference in the frequencies is about 20–30% from the natural one.

In Figs. 10–12 are represented the computational results for the same turbine last stage in an off-design regime, which

is characterized by a raised back pressure and non-uniformity in pressure distribution along the pitchwise direction. It

was accepted that the sinusoidal law of pressure change from blade to blade applies, as shown in Fig. 10. The integers

on the abscissa correspond to rotor blade number (the rotor wheel includes 96 blades). Fig. 11(a) shows the graphs of

the unsteady modal forces corresponding to the first and second modes for the first blade during a full rotor revolution.

In Figs. 11(b,c) we can observe that the amplitude-frequency characteristics for the first and second modes include a

high-frequency harmonic ðnz3 ¼ 2800HzÞ corresponding to the rotor moving past one stator-blade pitch, and a low-

frequency force component (50Hz) corresponding to the rotor rotation frequency. Moreover, the value of the high-

frequency force component acting on the blade varies with the blade rotation, but its amplitude is significantly smaller

than the amplitude of low-frequency unsteady force.
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Fig. 4. The unsteady force variation while taking into account the blade oscillations: (a) and (b) first and fifth blades, first mode; (c)

and (d) first and fifth blades, second mode.

Fig. 5. The first mode unsteady force variation for the first and fifth blades while taking into account the blade oscillations, for (a) the

beginning of the transient and (b) the end of the transient.

V.I. Gnesin et al. / Journal of Fluids and Structures 19 (2004) 1141–1153 1149
The blade motion in the form of the modal coefficients variation in time for the first and second modes of the first

blade is presented in Fig. 12.

As we can see, the blade oscillations are stable oscillations, including mainly the first natural mode of oscillations (the

integer in Fig. 12(a) correspond to mode numbers). Fig. 12(b) shows the amplitude-frequency spectrum of the blade
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Fig. 6. Amplitude-frequency characteristics for unsteady aerodynamical forces acting on the first blade: (a) first mode, (b) second

mode, (c) third mode, (d) eighth mode.

Fig. 7. The modal coefficient for the first and fifth blades versus time: (a) first mode, (b) second mode.

V.I. Gnesin et al. / Journal of Fluids and Structures 19 (2004) 1141–11531150
vibration in the first mode. The spectrum includes the blade oscillation frequencies close to their natural ones (not

multiples of rotation frequency) and frequencies caused by low-frequency forced loads, which are multiples of the rotor

rotation frequency.
4. Conclusions

A partially integrated method is adopted for the solution of the coupled aerodynamic-structural problem of 3-D flow

through a turbine stage while taking into account rotor blade oscillations.
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Fig. 8. The eighth mode modal coefficient for the first blade.

Fig. 9. Amplitude-frequency characteristics for the first blade motion: (a) first mode, (b) second mode, (c) third mode, (d) eighth mode.

V.I. Gnesin et al. / Journal of Fluids and Structures 19 (2004) 1141–1153 1151
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Fig. 10. The back-pressure distribution at the exit of the stage under off-design conditions.

Fig. 11. The modal force variation during a full rotor revolution.

V.I. Gnesin et al. / Journal of Fluids and Structures 19 (2004) 1141–11531152
The mutual influence of both outer flow non-uniformity and non-stationarity caused by blade oscillation were

investigated.
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Fig. 12. The blade oscillations under off-design conditions.

V.I. Gnesin et al. / Journal of Fluids and Structures 19 (2004) 1141–1153 1153
It has been shown that the amplitude-frequency spectrum of blade oscillations contains harmonics with high

frequencies and low frequencies, which are not multiples of the rotation frequency.
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